Bagging for Gaussian process regression
نویسندگان
چکیده
This paper proposes the application of bagging to obtain more robust and accurate predictions using Gaussian process regression models. The training data is re-sampled using the bootstrap method to form several training sets, from which multiple Gaussian process models are developed and combined through weighting to provide predictions. A number of weighting methods for model combination are discussed, including the simple averaging rule and the weighted averaging rules. We propose to weight the models by the inverse of their predictive variance, and thus the prediction uncertainty of the models is automatically accounted for. The bagging method for Gaussian process regression is successfully applied to the inferential estimation of quality variables in an industrial chemical plant.
منابع مشابه
Bagging for robust non-linear multivariate calibration of spectroscopy
This paper presents the application of the bagging technique for non-linear regression models to obtain more accurate and robust calibration of spectroscopy. Bagging refers to the combination of multiple models obtained by bootstrap re-sampling with replacement into an ensemble model to reduce prediction errors. It is well suited to “non-robust” models, such as the non-linear calibration method...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملEvaluation of Gaussian Processes and Other Methods for Non-linear Regression
This thesis develops two Bayesian learning methods relying on Gaussian processes and a rigorous statistical approach for evaluating such methods. In these experimental designs the sources of uncertainty in the estimated generalisation performances due to both variation in training and test sets are accounted for. The framework allows for estimation of generalisation performance as well as stati...
متن کاملCombining Classifiers based on Gaussian Mixtures
A combination of classification rules (classifiers) is known as an Ensemble, and in general it is more accurate than the individual classifiers used to build it. Two popular methods to construct an Ensemble are Bagging (Bootstrap aggregating) introduced by Breiman, [4] and Boosting (Freund and Schapire, [11]). Both methods rely on resampling techniques to obtain different training sets for each...
متن کاملComparison of Ensemble Strategies in Online NIR for Monitoring the Extraction Process of Pericarpium Citri Reticulatae Based on Different Variable Selections.
Different ensemble strategies were compared in online near-infrared models for monitoring active pharmaceutical ingredients of Traditional Chinese Medicine. Bagging partial least square regression and boosting partial least square regression were adopted to near-infrared models, to determine hesperidin and nobiletin content during the extraction process of Pericarpium Citri Reticulatae in a pil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 72 شماره
صفحات -
تاریخ انتشار 2009